

产品使用手册

智能空气氟化物综合采样器 JCH-6121

青岛聚创环保集团有限公司 青岛创仪环境检测设备有限公司 Qingdao Chuangyi environmental testing equipment Co., Ltd

安全警告

٨	警告
/₹/	本仪器使用交流 220V 50Hz 电源工作,避免误接其
	它工业电源造成人身伤害以及损坏采样器。
\wedge	警告
$\overline{\langle 1 \rangle}$	仅适用于非防爆场合!
٨	警告
\sum	遇突发事件,先断开电源!

JCH-6121 型智能空气氟化物综合采样器

1 产品概述

JCH-6121 型智能空气氟化物综合采样器 (以下简称采样器)可以实现环境空气和 氟化物粒子的综合采样,应用溶液吸收法采集环境大气、室内空气中各种有害气体;空 气中氟化物用浸渍玻璃纤维滤纸采集,洗脱后,用离子选择电极测定氟离子的含量。该 采样器满足 JJG 956-2013《大气采样器检定规程》、HJ/T 375-2007《环境空气采样器技 术要求及检测方法》以及 HJ 955-2018 《环境空气 氟化物的测定 滤膜采样/氟离子选 择电极法》的要求,产品性能稳定,操作方便。根据 JJG 956-2013《大气采样器检定规 程》的要求,并在小型便携、流量稳定性等方面有较大的改进,大大减少了劳动强度。

2 适用范围

采样器应用溶液吸收法采集环境大气、室内空气中的各种有害气体;空气中氟化物 用浸渍玻璃纤维滤纸采集,洗脱后,用离子选择电极测定氟离子的含量。可供环保、卫 生、劳动、安监、军事、科研、教育等部门用于气态物质和气溶胶的常规及应急监测。

3 采用标准

JJG 943-2011 《总悬浮颗粒物采样器》

JJG 956-2013 《大气采样器检定规程》

HJ/T 374-2007 《总悬浮颗粒物采样器技术要求及检测方法》

HJ/T 375-2007 《环境空气采样器技术要求及检测方法》

HJ 955-2018 《环境空气 氟化物的测定 滤膜采样/氟离子选择电极法》

4 主要特点

4.1 电子流量计自动精准控制流量,流量无波动,恒流采样;

4.2 大气使用高性能超低音进口隔膜泵,极大提高稳定性,使用寿命长、超低噪音;

4.3 大气使用高效防倒吸干燥器设计,有效防止误操作导致吸收液倒吸,增强仪器安全性;

4.4 大气使用优质滤尘滤芯,实现颗粒物过滤功能,防止进入气路干扰采样,同时保护采样泵和气路;

4.5 大气采样两路设计,采样方式灵活,可采集两种气体或者平行样,并可分别 单独控制;

3

4.6 颗粒物采样采用无刷控制风机,噪声小,负载大,适合连续长时间工作;

4.7 氟化物采样头采用铝合金材质,抗静电吸附;

4.8 无刷高负压采样风机, 50L/min 流量下可以轻松克服 20kPa 阻力。

4.9 实时监测计压、计温,自动补偿流量偏差,进一步优化了流量精确度;

4.10 体积小、重量轻,携带方便。

4.11 兼容 TSP 采样头,可以实现 TSP 的 100L/min 采样

4.12 大尺寸中文点阵式液晶屏,自动调节对比度的中文液晶显示屏,可在零下 30 摄氏度正常工作,适应于寒冷地区采样,通俗软件显示界面,实现良好人机交互;

4.13 自动计算累计采样体积,并同时根据气压、温度换算标况采样体积。

5 工作原理

5.1 氟化物采样

空气中氟化物用浸渍玻璃纤维滤纸采集,洗脱后,用离子选择电极测定氟离子的含量。

5.2 大气采样

采样器是以采样泵抽取样品,气体流过电子流量计,将流量信号送微处理器进行处理,得出瞬时流量并累加采样体积,同时,根据采集到的计前温度及计前压力,换算成标况采样体积。后期,可根据采集到的有害气体含量和标况体积计算其浓度。

6 技术指标

采样器的主要技术指标见表1所示。

主要参数	参数范围	分辨率	准确度	
大气采样流量	(0.1~1.0) L/min	0.1L/min	优于±2.5%	
氟化物采样流量	(10~110) L/min	0.1L/min	优于±2.5%	
延时时间	1min~99h59min	优于±0.2%		
采样时间	1min~99h59min	优于±0.2%		
间隔时间	1min~99h59min	优于±0.2%		
流量稳定性	/ 优于±0.2%			
流量重复性	/ 优于±0.2%			
等间隔采样次数	1~99 次			

表1 采样器主要技术指标

等间隔采样时间	<99h59min				
最大采样体积	99	99.99L			
计前压力	(-30~0) Kpa	(-30~0) Kpa 0.1Kpa 优于±2.			
环境大气压	(70~130) Kpa	0.1Kpa	优于±2.5%		
温控范围	(15~30) °C	优于±1.5℃			
工作温度	(-30~+50) °C 0.1°C 优于±1°C				
工作电源	AC220V±10% 50Hz				
噪声	<59dB(A)				
整机尺寸	260mm×275mm×265mm				
(W*D*H)	360mm×2/5mm×365mm				
整机重量	约 7.5KG				

7 工作条件

- a) 工作电源: AC220V±10% 50Hz;
- b) 环境温度: (-20~45)℃;
- c) 环境湿度: (0~95)%RH;
- d) 大气压力: (85~106)kPa;
- e) 电源接地线应良好接地;
- f) 野外工作时,应有防雨、雪、尘以及日光曝晒等侵袭的措施。

8 整机结构

键盘功能说明:

a)"▲、▼、◀、▶"键:参数输入状态时,用于修改参数;菜单选择状态时,用 来移动光标,选中需要的菜单。

b)"确认"键:参数输入状态时,确定输入的参数;菜单选择状态时,执行选中菜单的操作;在是否退出采样状态时,进行继续采样。

c)"切换"键:用于大气采样与颗粒物采样之间互相切换。

d)"取消"键:在修改参数时取消当前输入的数值,恢复修改前的数值;退回到上一级菜单;在是否退出采样状态时,停止采样。

9 使用方法

9.1 采样前准备

9.1.1 选择干燥、避阳处,将仪器放置平稳或放置在三脚支架上。

9.1.2 各干燥器内装入具有充分干燥能力的变色硅胶,数量约占干燥器容积的四分 之三,拧紧使之不漏气,放入干燥器槽内。

9.1.3 采样前将滤膜绒面朝上装到氟化物采样头上,并安装在主机上。

9.1.4 按相关采样标准,将吸收瓶内装入定量吸收液后放在吸收瓶架上。

9.1.5 确认电源为交流 220V 后,接通电源线,打开电源开关,查看采样器自检时 屏幕有没有错误提示。若有,应调整好后再使用。

9.1.6 气路连接管不应折弯过大,以防气路被堵死;请正确连接气路,防止引起试 液倒吸,损坏主机。

9.2 开机显示

9.2.1 开机后,采样器进入初始状态,进行自检,并显示采样器型号、名称、版本 号,如图1所示。

图1 开机显示界面

若采样器参数未备份、存在简单故障(如未连接温度传感器)等,则在自检过程中 有相应提示,如图2所示。

系无	纺备	E 自 代	枪 	ž.	•	•			
ìt	温	A	错	误	Ę!				
>	>	>	>	>	>	>	>	>	>

图 2 开机显示界面(有故障时)

自检正常后,自动对流量进行校零。如图3所示。

图3 自动校零界面

9.2.2 采样器开机校零结束后自动进入主菜单界面,如图4所示。

图4 采样主菜单界面

a) 屏幕右上角为供电方式的符号: 插座图标显示接入外部交流电;

b) 屏幕上方为系统时钟、当前环境的大气压、环境温度及标定温度每隔 5 秒钟交替显示。

9.3 大气采样

9.3.1 采样设置

在大气采样菜单界面,将光标移动到"采样设置"选项,按"确认"键进入设置菜单,如图5所示。以A路设置为例,B路与A路可设置的参数相同。

▶2-1 A路	12:34 🕇
①编号	01
②单次	00h 45m
③间隔	00h 00m
④次数	01
⑤启动	12:50
⑥B路设	置

图 5 设置界面

操作"▲、▼、◀、▶"键进行修改,修改完毕后按"确认"键保存修改。其时间

设置单位为小时和分钟。

单次:表示单次采样的时间;

间隔: 表示相邻两次采样的时间间隔;

次数:表示采样次数。

采样模式分为"非间隔采样"和"间隔采样"两种。

a)非间隔采样设置:"单次"采样时间应大于0分钟,"间隔"时间应为0分钟, "次数"为1次;

b)间隔采样设置:"单次"采样时间应大于0分钟,"间隔"采样时间大于0分钟, "次数"应大于或等于2次;

注:上述设置参数值会被采样器自动保存,若下次采样模式相同,可直接采用,无 需重新设置。

设置完毕后,选择"B路设置",按"确认"键进入B路设置。此时,屏幕上方会显示"2-2 B路",设置方法同A路。

9.3.2 采样

在主菜单界面移动光标到"大气采样"项,按"确认"键进入采样界面,如图6 所示。

ମ	12:34 🕇
● ABB路路型热温持动	□ 1.0L/min 1.0L/min 标况 打开 20℃ 00h 45m

图6 采样界面

屏幕右上角,显示当前的系统时间和电池电量信息。

①A 路:在此表示仅使能 A 路进行单路采样;

②B路:表示B路未被使能;

③A 路 1.0L/min: 表示 A 路采样流量设置为 1.0L/min;

④B 路 1.0L/min: 表示 B 路采样流量设置为 1.0L/min;

⑤类型:默认为标况采样流量;

⑥加热:表示现在加热已经打开;

⑦限温:表示设置加热的最高温度为20℃;

⑧保持:表示采样结束以后,恒温保持45分钟;

⑨启动:按"确认"键,系统会自动校零,无需手动校零。校零结束后,采样泵启动,开始采样。

9.3.2.1 若A路和B路均未勾选,按下并且还未设置参数,此时会提示如图7所示。

图 7 未设置采样提示

9.3.2.2 如果采样过程中突然出现管路堵塞的情况(以A路为例,B路显示同A路),则会显示如图8所示。

ମି 2-1	00	12:	34 y
A路	管路	堵塞	1

图8 管路堵塞提示

9.3.2.3 如果在单路设置状态下启动, A 路和 B 路同时工作,采样过程其中一路相 比另一路采样早结束(以 B 路为例, A 路情况同 B 路),则会提示如图 9 所示。未结束 采样的一路继续完成采样。

图 9 B 路采样结束提示

9.3.3 即时采样

以A路为例,B路参数显示同A路。启动采样后,显示如图10所示。

编号A=01 流量A=1.00L/min 标体A=0000.00L 计压A=-00.11kPa 计温A=-00.11kPa 环温 =+12.0℃ 液温 =+20.0℃ 累计 =00h00m03s	ମି 2-1 00	12:34 🕇
流量A=1.00L/min 标体A=0000.00L 计压A=-00.11kPa 计温A=-00.11kPa 环温 =+12.0℃ 液温 =+20.0℃ 累计 =00h00m03s	编号A=01	
标体A=0000.00L 计压A=-00.11kPa 计温A=-00.11kPa 环温 =+12.0℃ 液温 =+20.0℃ 累计 =00h00m03s	流量A=1.	00L/min
计压A=-00.11kPa 计温A=-00.11kPa 环温 =+12.0℃ 液温 =+20.0℃ 累计 =00h00m03s	标体A=00	00.00L
计温A=-00.11kPa 环温 =+12.0℃ 液温 =+20.0℃ 累计 =00h00m03s	计压A=-0	00.11kPa
环温 =+12.0℃ 液温 =+20.0℃ 累计 =00h00m03s	计温A=−C	00.11kPa
液温 =+20.0℃ 累计 =00h00m03s	环温 =+1	2.0°C
累计 =00h00m03s	液温 =+2	20.0°C
	累计 =00)h00m03s

图 10 采样过程界面

屏幕上方,显示的"2-1"表示A、B两路同时采样,此时显示的是A路状态信息, "2-2"表示显示是B路状态信息;"00"表示完成次数。只有当设置的采样次数多余1 次才显示。右上角依次显示的是系统时间和交流电通电状态。

①编号 A=01: 表示本次 A 路采样的编号;

②流量 A=1.00L/min: 表示设置的当前采样流量;

③标体 A=0000.00L: 表示设置当前采样累计的标况体积;

④计压 A=-00.11kpa: 表示当前 A 路管内的负压值;

⑤计温 A=-00.11kpa: 表示当前管路内的气体温度;

⑥环温:表示当前环境温度;

⑦液温:表示当前加热箱的温度;

⑧累计=00h00m03s:表示本次采样累计时间。

采样过程中若按"取消"键,抽气泵停止工作,采样暂停,屏幕上方出现暂停符号 "■",计时停止。此时若要停止采样,需重新按取"取消"键,若要继续采样,则按"确 认"键。如图 11 所示。

图 11 退出采样提示

9.3.4 定时采样

按图 12 所示,修改"采样时刻",设置为定时采样,按"启动"选项,屏幕显示如图 12 所示,开始定时采样。

ଶ	00		12	2:34	¥
采	样时酮	刻	12	:50	
倒	计时	00)h1!	5m03	s

图 12 采样定时等待界面

a)采样时刻:表示启动的时间。当系统时间运行到这个时间时,采样器将立即结 束等待状态,启动抽气泵,进入采样状态。最下面的一行是倒计时时间。

b) 倒计时: 表示倒计时时间。

c)在"定时等待"状态时,若持续按"取消"键三秒钟,可以退出等待状态,结束整个定时采样的操作,返回主菜单;

d)"间隔采样"时,在一次采样结束后,屏幕显示如图 13 所示。

间隔延时:表示间隔采样时间;

完成次数:表示设置间隔采样3次,已完成了1次采样;

倒计时:显示距离下次启动的的倒计时时间。

ମି 2-1 01	12:34 🕈
间隔延时	00h10m
完成次数	01/03
倒计时 0	0h05m03s

图 13 采样间隔延时界面

在定时等待状态时,若按"取消"键,则会弹出对话框,显示如图 11 所示。用户 根据实际情况选择继续采样或者退出采样

9.4 查询

在主菜单界面选择"查询"项,按"确认"键进入查询菜单,如图 14 所示,显示 的是最后一次采样的数据,包括采样流量、标况体积、累计时间等信息。

> Q 01号 12:34 ¥ 流量A=1.01L/min 流量B=1.00L/min 实体A=000000.0L 实体A=000000.0L 标体A=000000.0L 标体B=000000.0L 环温=+12.0℃ 累计=00h00m03s 2017-02-08 12:30

图 14 采样查询界面

a)通过操作▲、◀或▼、▶键分别"上翻"或"下翻"查看不同文件号对应的采 样文件详细信息。顶部状态栏会显示当前查看的文件号,当前是 01 号文件。

b)采样器可存储 80 组采样数据,若数据存满,再存储时则会从第一组数据开始,顺序覆盖存储。

9.5 粉尘采样

在主菜单状态按"切换"键切换到"粉尘采样"状态,显示如图 15 所示。

图 15 粉尘采样主菜单界面

9.5.1 设置

进入"设置"菜单,显示如图 16 所示。

采样模式分为"非间隔采样"和"间隔采样"两种。

a)非间隔采样设置:"单次"采样时间应大于0分钟,"间隔"时间应为0分钟, "次数"为1次;

b)间隔采样设置:"单次"采样时间应大于0分钟,"间隔"采样时间大于0分钟,
 "次数"应大于或等于2次;

₽	12:34 🕈
①单次	00h 45m
②间隔	00h 00m
③次数	01

图 16 粉尘设置界面

9.5.2 采样

进入"采样"菜单,显示如图17所示。

12:34 🎙
时刻 12:50
100L∕min
10

图 17 粉尘采样设置界面

需要输入滤膜的编号,便于用户对样品的标记和管理。

9.5.3 即时采样

选择"启动"选项,按"确认"键,系统会自动校零,无需手动校零。校零结束后, 采样风机启动,开始采样。显示如下图 18 所示,实时显示当前的实际采样流量、实际 采样体积、标况采样体积,计前压力,实际温度和累计采样时间。

Ê_	II 12:34 🕇
流量	t=000.0L∕min
实体	5=000000.0L
标体	t=000000.0L
计归	<u>=</u> -00.11kPa
环温	∄=+12.0 ℃
累计	-=00h00m03s

图 18 粉尘采样界面

采样数据分两屏幕显示,按"▲、▼"键或"◀、▶"键可以翻屏查看。 采样过程中若按"取消"键,则出现暂停符号"Ⅱ",风机停止工作,采样暂停,计

时停止。此时若要停止采样,则再按"取消"键,若要继续采样则按"确定"键。

9.5.4 定时采样

按图 17 粉尘采样设置界面所示,修改"采样时刻",设置为定时采样,按"启动" 选项,屏幕显示如图 19 所示,开始定时采样。

Ê_	00		12:34 y		
采材	羊时調	刻	12:5	i0	
倒ì	十时	00	h15m	103s	

图 19 采样定时等待界面

a)采样时刻:表示启动时间。当系统时间运行到这个时间时,采样器将立即结束 等待状态,启动风机,进入采样状态。

b) 倒计时:表示倒计时时间。

c)在"定时等待"状态时,若持续按"取消"键三秒钟,可以退出等待状态,结束整个定时采样的操作,返回主菜单;

d)"间隔采样"时,在一次采样结束后,屏幕显示如图 20 所示。

间隔延时:表示间隔采样时间;

完成次数:表示设置间隔采样3次,已完成了1次采样;

倒计时: 表示距离下次启动的的倒计时时间。

Ê_	01	12:34 🕈		
间	隔延时	00h10m		
完	成次数	01/03		
倒	计时 00	0h05m03s		

图 20 采样间隔延时界面

9.6 维护

在主菜单界面,将光标移动到"维护"选项,按"确认"键进入设置菜单,如图 21 所示。

图 21 维护界面

时钟标定和亮度对比度可以不用输入密码,直接进行修改。时钟标定界面如图 22 所示:

>	12:34 🕈
	47 00 00
①日期	17-02-08
ையும்	12.34.30
ையியி	12.34.30

图 22 时钟标定界面

通过操作▲、◀或▼、▶键对日期或者时间进行修改。按下"确认"键保存修改。 按下"取消"键取消修改。

亮度/对比度设定界面如图 23 所示:

图 23 亮度/对比度设定界面

以对比度设定界面为例,选择对比度设定图标,按下"确认"键进入,如图 24 所示:

图 24 对比度设定界面

操作▼、◀或▲、▶键分别减小或者增大对比度。按下"确认"键保存修改。按下"取消"键,取消修改。

在维护界面下,选择"系统标定"图标,按下"确认"键进入,密码输入界面。默 认密码 2016。输入正确密码后按"确认"键进入维护菜单,如图 25 和 26 所示。

图 25 标定界面 1

图 26 标定界面 2

标定界面1和2通过方向键进行切换。标定界面下所有系统参数出厂均经过仪器校准,用户不得随意修改。如果不慎错误修改数据,请按方向键选择"数据恢复"图标,按下"确认"键进入后选择恢复数据。

10 注意事项

10.1 采样器在运输、使用过程中应尽量避免强烈的震动碰撞及灰尘、雨、雪的侵袭。

10.2 现场采样时,应确认使用 220V 交流电! 防止误接其它工业电源而损坏采样器,甚至造成人身伤害。

10.3 关机后应间隔 5 秒钟以上才能再开机。

10.4 采样器大气采样时采样前应将干燥器和吸收瓶与采样器正确连接,才能开机运行,以免灰尘、杂物吸入传感器及采样泵,而损害采样器。

10.5 采样过程中应关注干燥剂的干燥能力,在干燥剂三分之二变色后应及时更新。

11 简单故障及排除方法

采样器简单故障及排除方法见表2所示。遇到故障,请按下表查修,如还不能排除, 请及时与我们联系。

故障现象	可能原因	排除方法
打开电源开关, 无任何反应	 1)未接通电源 2)仪器保险丝烧坏 	1) 接通 220V 电源 2) 更换保险丝
启动采样,风机不转	风机卡住或锈死	更换风机或返厂维修
未到采样结束时间而自行停止或无流量	 1) 阻力过大 2) 气路堵塞 	疏通气路
吸收液倒吸	吸收瓶处管路接反	按照正确方法连接管路
大气采样流量长时间达不到设定值	1) 管路漏气 2) 气路堵塞	1)检查气路,更换连接管 2)疏通气路

表2 采样器简单故障及排除方法

序号	名称	单位	数量	备注
1	主机	石	1	
2	主机铝箱	个	1	
3	气路连接管φ4.5×8	根	2	220mm(红色)
4	气路连接管φ4.5×8	根	2	280mm(蓝色)
5	干燥筒	个	2	
3	电源线	根	1	
4	切割器	个	1	
5	三脚支架	套	1	
6	合格证	份	1	
7	说明书	份	1	
8	装箱单	份	1	

装箱单